Cross-section measurements of the $^{29}{\rm Si}(p,2\alpha)^{22}{\rm Na}$ reaction by residual activity Marcelo T. Yamashita¹, Francis Bringas¹, Iuda D. Goldman¹, Paulo R. Pascholati¹, Valdir Sciani² A stacked-foil method was used to obtain the excitation function of the $^{29}\mathrm{Si}(p,2\alpha)^{22}\mathrm{Na}$ (Q=-14273.7(5) keV) reaction for energies near the threshold. Measurements by residual activity were performed in eight silicon foils irradiated with a 24 MeV proton beam. A careful study about the existence of some impurities of $^{23}\mathrm{Na}$ in the silicon sample (which could affect the results due to the fact that the magnitude of the $^{23}\mathrm{Na}$ neutron capture cross section is much larger than the $^{29}\mathrm{Si}(p,2\alpha)^{22}\mathrm{Na}$ cross section) was made using ($n_{thermal},\gamma$) reaction with a thermal neutron beam with a flux of 10^{13} neutron/ cm^2 s. The ratio of the number of $^{23}\mathrm{Na}$ and silicon atoms in a silicon sample was calculated as being $0.570(61) \cdot 10^{-12}$. The study of reactions induced by protons with energies near the threshold and that presents a very small value for the cross-section, order of μb , is very scarce in the literature. These data can give a better understanding about the formation of the compound nucleus and the existence of structures, clusters, inside the nuclei. In particular, $(p, 2\alpha)$ reactions are usually studied in energies far from the threshold. This situation can be understand taking into account the magnitude of the cross-sections and the experimental difficulties where the presence of few impurities can produce ambiguous data. The nuclide 22 Na (half-life of 2.602 years) originated from the $(p, 2\alpha)$ reaction. The 22 Na decays by electron capture to 22 Ne and it is identified by the characteristic gamma line of 1274 keV. The energy of the proton beam was monitored by putting a cooper foil in front of the silicon samples. The energy was obtained from the ratio of the 62 Zn and 65 Zn activities coming, respectively, from the 63 Cu(p,2n) and 65 Cu(p,2n) reactions. The peaks were fitted using a covariant least-squares method. The results for the proton beam energy and the calculated cross sections are presented in Table 1 for the various silicon foils. | foil | proton energy | cross section | |------|---------------|---------------| | | (MeV) | (μb) | | 1 | 23.69(14) | 66(3) | | 2 | 22.87(14) | 15.4(9 | | 3 | 22.02(15) | 1.0(4) | | 4 | 21.20(15) | 25.4(9) | | 5 | 21.15(15) | 9.0(8) | | 6 | 19.32(16) | 2.1(5) | | 7 | 18.96(16) | 4.1(4) | | 8 | 16.50(18) | 0.92(28) | Table 1: Results for the cross section of the $^{29}\text{Si}(p,2\alpha)^{22}\text{Na}$ reaction. The first column is the number of the silicon foil and the second is the energy of the incident proton beam. Email: myamashita@if.usp.br ¹ Laboratório do Acelerador Linear, Instituto de Física, Universidade de São Paulo ² Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP